Also several studies have explored the idea of reducing the tumor IFP as a way to overcome the drug delivery barriers

The distribution volume plots show that the tumor was not entirely covered by the tracer even with longer infusion times. Such a low tumor coverage by the tracer was due to the relatively uniform IFP within the tumor except in the region close to the infusion site which restricted the ASP1517 resulting convective velocity and tracer filtration within the tumor and directed transport outwards. Increases in infusion flow rate had profound effects on the tracer distribution as convective velocity outside the tumor was greatly reduced compared to flows enhanced inside the tumor. This was because increasing the flow rate mainly affected the fluid flows locally close to the infusion site. Although the convective velocity is uniform inside the tumor, it dropped steeply at the tumor periphery due to greater lymphatic uptake of interstitial fluid in the normal tissue. Thus the tracer could be expected to be convectively transported well inside the tumor but mainly diffusely at the boundary. This combined with the lack of lymphatics inside the tumor caused more tracer to distribute within the tumor than outside, and this effect became more pronounced at higher flow rates. For the same amount of infusion volume, the tumor was almost fully covered by the tracer at a flow rate of 3 mL/min. The challenge regarding using high infusion rates experimentally is backflow, which our model did not account for. Specially designed cannulas may allow for such infusions at higher flow rates without backflow. The sensitivity analysis was also used to study tracer distribution at different catheter positions, in an attempt to find a suitable placement which could maximize distribution volume in the target site. For the set of baseline parameters, we found that infusion at the center of the tumor produced the maximum distribution volume within the tumor. Infusion at the tumor-host tissue interface tended to distribute the drug outside the tumor due to enhanced convective effects at the tumor boundary. It should be noted that, the outward flow of albumin from the tumor for infusions at the anterior end of the tumor is also partially due to an unphysical artifact, which is the proximity of the infusion site to the cut ends of the tumor where a zero pressure boundary condition was specified. A similar pattern can be expected for infusions at the posterior end of the tumor. In the future, this approach can be automated to solve infusion in every voxel to determine the optimal infusion site thereby helping with surgical planning on a case-by-case basis. The possibility of reducing the tumor IFP by increasing the sensitivity of tissue hydraulic conductivity to tissue porosity was also investigated. This analysis was done to partially account for soft tissue swelling and resulted in increased heterogeneous transport.

Leave a Reply