The incidence of hip fractures and cost for treatment will rise in the novel proofs to enhance the current classification

Tree shrew is a small mammal which closer to human in phylogenetically relationship than other small experimental animals, such as mouse, rat, rabbit and guinea pig; and farther to human than chimpanzee, monkey, and pig. We also verified the cDNA sequence of tsGAPDH using qRT-PCR and verified the protein expression of tsGAPDH with western blot. Tree shrew has small body size, relative low cost and relatively easy to use in the laboratories. Currently, tree shrew is classified as Scandentia, that is between Primates and Insectivora, though the very early studies suggest that the tree shrew has been grouped into the Primates. Our phylogenetic analysis supports the current classification for tree shrew. The phylogenetic relationship of tree shrew and human is closer than mouse, rat, guinea pig and rabbit. Thus, tree shrew can be used to closely mimic human disorders than use of mouse, rat, guinea pig or rabbit. The difference of GAPDH in amino acid’s number between tree shrew and human is small. The number is only 17 of total 333 amino acids. We tried to analyze the cDNA sequence of tsGAPDH to find the tree shrew special sites but failed. Lack of tree shrew genome database and without well-understanding of the tree shrew genome, it was difficult to learn more genetic information based on only a cDNA sequence of housekeeping gene and a few genome information. Although it is enough to apply tsGAPDH as an internal reference in study with the tree shrew as experimental animal model. GAPDH has been considered as a housekeeping gene in human, mouse, rat or other experimental animals. GAPDH is widely used as an internal reference in quantitative methods, including qRT-PCR, western blot, which are two popularly ones used to Butenafine hydrochloride quantify RNA and protein content, respectively. In this study, tsGAPDH was verified that it widely and richly exists in each examined tissue of tree shrew by both qRT-PCR and western bolt. The tsGAPDH still can be measured even the sample was loaded in small quantity of 5 mg total protein by western blot; and if the quantity of total protein loading was more than 25 mg, it was difficult to analyze the difference between various tissues. But tsGAPDH was not expressed at an equal level in every tissue and it is not expressed in complete parallel level of RNA and protein. In our data, tsGAPDH expressed in a significantly high level of RNA in skin among all measured tissues. Expression of tsGAPDH in muscle was lower than that in skin; and expression in kidney was lower than that in muscle. The RNA expressions in other tissueswere lower than that in kidney, and they were roughly equal between each other. The expression of tsGAPDH protein was different to RNA’s. The tsGAPDH protein expressed in a high level in muscle, bladder, kidney, skin, spleen and brain. The liver and intestine had relatively lower content of tsGAPDH protein. In brief, tree Amikacin hydrate shrew’s muscle, kidney and skin had relatively high GAPDH expression level in both RNA and protein. The tissue preference of tsGAPDH maybe deserve more further works. Osteoporosis is associated with deficiency of ovarian hormone following menopause. A sharp decrease in ovarian estrogen production is the predominant cause of rapid, hormone-related bone loss after menopauseas a result of higher bone turnover, an imbalance between bone formation and bone resorption & net bone loss. The common sites of fracture among postmenopausal women include the vertebrae, forearm and hip.

Leave a Reply